卯卯 | 炼就一手绝世刀法!

日出东海落西山,愁也一天,喜也一天。遇事不钻牛角尖,人也舒坦,心也舒坦!

N-gram语言模型(基于词频统计)和word2vec(基于上下文信息)训练出来的词向量模型有什么优缺点???

为什么要用神经网络来训练词向量,而不是用N-gram:神经网络训练出来的模型:1,能发现近似的含义的词。2,求解出来空间是符合我们真实逻辑的。

gensim训练word2vec并使用PCA实现二维可视化

结果:代码:# -*- coding: utf-8 -*-from gensim.models import Word2Vecfrom sklearn.decomposition import PCAfrom matplotlib import pyplot# 训练的语料sentences = [['this', 'is', 'the', 'first', 'sentence', 'for', 

自然语言模型的评估——准确率,召回率,综合评价指标F值

1,准确率是相对于机器的标准效率来说,机器标准正确的和错误的比:2,召回率是相对于监督的数据而言,原始数据正确的被标注的和没有正确被标注的;3,F值是综合评价指标:2×准确率×召回率/(准确率+召回率)
«   2019年1月   »
123456
78910111213
14151617181920
21222324252627
28293031
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
搜索
最新留言
文章归档
网站收藏
友情链接
  • RainbowSoft Studio Z-Blog
  • 订阅本站的 RSS 2.0 新闻聚合

Powered By Z-BlogPHP 1.5.2 Zero

转载请注明文章出处!!!!!