2019-01-21 22:03:46
为什么要用神经网络来训练词向量,而不是用N-gram:神经网络训练出来的模型:1,能发现近似的含义的词。2,求解出来空间是符合我们真实逻辑的。
2019-01-21 21:18:05
结果:代码:# -*- coding: utf-8 -*-from gensim.models import Word2Vecfrom sklearn.decomposition import PCAfrom matplotlib import pyplot# 训练的语料sentences = [['this', 'is', 'the', 'first', 'sentence', 'for',
2019-01-21 11:23:29
1,准确率是相对于机器的标准效率来说,机器标准正确的和错误的比:2,召回率是相对于监督的数据而言,原始数据正确的被标注的和没有正确被标注的;3,F值是综合评价指标:2×准确率×召回率/(准确率+召回率)