2019-04-08 13:34:04
一般神经网络最基本的流程,当然实际任务中还会有batchsize,准确率等等,下面是最简版的。
2019-04-06 14:44:14
内容主要涉及:1,genism 的 word2vec 包的使用——model的训练和神经网络字向量、向量的准备。2, scikit-kearn 中的 K-means 算法和一些特征提取算法的使用。3,word2vec+TF_IDF通过文本 -词权重*词向量-的方式来表达文本语义,再进行文本聚类。——延伸:深度学习文本分类,文本语义的表达方式采用这种对模型进行修正。4,利用肘部法则,确定聚类数目。5,轮廓系数,检验效果。word2vec的使用:文本语义的表达:W*词向量:小知识点:Cou
2019-04-04 19:51:42
参考链接:https://blog.csdn.net/qq_20135597/article/details/83215137
2019-04-01 16:24:33
原理:将成词的词向量也加入到字向量到中。LSTM结构如下:所有能够加入到特征的词语的词向量预先训练好的。如果某个词语不在预先训练好的词向量文件(如下图)中,我们是没有特征加入进去的。
2019-04-01 15:57:30
CRF++的命名实体识别可以参考之前我写的blog。17年用的膨胀卷积神经网络,2018年bert (transfoemer ,attention机制)——+latticeLSTM(结构化的LSTM)目前NER最好的模型。
2019-04-01 15:55:05
序列标准问题-分词,命名实体识别,词性标准,短语块的识别(名词模块,动词模块),意图识别都是序列标准问题。占了接近NLP任务的1/3.