卯卯 | 炼就一手绝世刀法!

日出东海落西山,愁也一天,喜也一天。遇事不钻牛角尖,人也舒坦,心也舒坦!

tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定


tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置:
 
 
config = tf.ConfigProto(allow_soft_placement=True, allow_soft_placement=True)config.gpu_options.per_process_gpu_memory_fraction = 0.4  #占用40%显存sess = tf.Session(config=config)
 
 
1. 记录设备指派情况 :  tf.ConfigProto(log_device_placement=True)

设置tf.ConfigProto()中参数log_device_placement = True ,可以获取到 operations 和 Tensor 被指派到哪个设备(几号CPU或几号GPU)上运行,会在终端打印出各项操作是在哪个设备上运行的。2. 自动选择运行设备 : tf.ConfigProto(allow_soft_placement=True)
在tf中,通过命令 "with tf.device('/cpu:0'):",允许手动设置操作运行的设备。如果手动设置的设备不存在或者不可用,就会导致tf程序等待或异常,为了防止这种情况,可以设置tf.ConfigProto()中参数allow_soft_placement=True,允许tf自动选择一个存在并且可用的设备来运行操作。3. 限制GPU资源使用:
 
为了加快运行效率,TensorFlow在初始化时会尝试分配所有可用的GPU显存资源给自己,这在多人使用的服务器上工作就会导致GPU占用,别人无法使用GPU工作的情况。
tf提供了两种控制GPU资源使用的方法,一是让TensorFlow在运行过程中动态申请显存,需要多少就申请多少;第二种方式就是限制GPU的使用率。
一、动态申请显存
 
 
config = tf.ConfigProto()config.gpu_options.allow_growth = Truesession = tf.Session(config=config)
 
二、限制GPU使用率
 
 
 
 
config = tf.ConfigProto()config.gpu_options.per_process_gpu_memory_fraction = 0.4  #占用40%显存session = tf.Session(config=config)

或者:
 
 
gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=0.4)config=tf.ConfigProto(gpu_options=gpu_options)session = tf.Session(config=config)
 
设置使用哪块GPU
方法一、在python程序中设置:
 
os.environ['CUDA_VISIBLE_DEVICES'] = '0' #使用 GPU 0os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # 使用 GPU 0,1
 
方法二、在执行python程序时候:
CUDA_VISIBLE_DEVICES=0,1 python yourcode.py
推荐使用更灵活一点的第二种方法。

参考blog:https://blog.csdn.net/dcrmg/article/details/79091941 


发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

«   2025年4月   »
123456
78910111213
14151617181920
21222324252627
282930
控制面板
您好,欢迎到访网站!
  查看权限
网站分类
搜索
最新留言
文章归档
网站收藏
友情链接
  • RainbowSoft Studio Z-Blog
  • 订阅本站的 RSS 2.0 新闻聚合

Powered By Z-BlogPHP 1.5.2 Zero

转载请注明文章出处!!!!!